Fractions and Division

Write a division expression for each fraction.

1. \(\frac{2}{9} \)
2. \(\frac{1}{7} \)
3. \(\frac{7}{10} \)
4. \(\frac{3}{4} \)
5. \(\frac{7}{8} \)
6. \(\frac{3}{16} \)
7. \(\frac{6}{13} \)
8. \(\frac{18}{23} \)
9. \(\frac{11}{12} \)

Write each division expression as a fraction.

10. \(3 \div 8 \)
11. \(3 \div 16 \)
12. \(6 \div 11 \)
13. \(2 \div 7 \)
14. \(4 \div 10 \)
15. \(5 \div 17 \)
16. \(4 \div 9 \)
17. \(13 \div 23 \)
18. \(17 \div 100 \)

19. Which term is any number that can be shown as the quotient of two integers?
 A. Rational number
 B. Prime number
 C. Decimal number
 D. Compatible number

20. Steve wanted to equally divide two sticks of butter among three bowls. Which fraction represents the amount of butter in each bowl?
 A. \(\frac{5}{2} \)
 B. \(\frac{2}{3} \)
 C. \(\frac{3}{2} \)
 D. \(\frac{3}{6} \)

21. Can the division expression \(4 \div 15 \) be shown as a fraction? If yes, write the fraction. Explain why or why not.